The Exascale Revolution

By Tiffany Trader

October 23, 2014

The post-petascale era is marked by systems with far greater parallelism and architectural complexity. Failing some game-changing innovation, crossing the next 1000x performance barrier will be more challenging than previous efforts. At the 2014 Argonne National Laboratory Training Program on Extreme Scale Computing (ATPESC), held in August, Professor Pete Beckman delivered a talk on “Exascale Architecture Trends” and their impact on the programming and executing of computational science and engineering applications.

It’s a unique point in time, says Beckman, director of the Exascale Technology and Computing Institute. While we can’t completely future-proof code, there are trends that will impact programming best practices.

When it comes to the current state of HPC, Beckman shares a chart from Peter Kogge of Notre Dame detailing three major trends, which can be traced back to 2004.

  • The power ceiling.
  • The clock ceiling.
  • Sockets and cores are growing.

As Kogge illustrates, there was a fundamental shift in 2004. Computing reached a point where the chips can’t get any hotter, the clock stopped scaling and there was no more free performance lunch.

“Now the parallelism in your application is increasing dramatically with every generation,” says Beckman. “We have this problem, we can’t make things take much more power per package, we’ve hit the clock ceiling, we’re now scaling by adding parallelism, and there’s a power problem at the heart of this, which translates into all sorts of other problems, with memory and so on.”

To illustrate the power issue, Beckman compares the IBM Blue Gene/Q system to its predecessor the Blue Gene/P system. Blue Gene/Q is about 20 times faster and uses four times more power, making it five times more power efficient. This seems like very good progress. But with further extrapolation, it is evident that an exascale system built on this 5x trajectory would consume 64MW of power. To add further perspective, consider a MW costs about $1 million a year in electricity, putting this cost at $64 million a year.

Power Problem Blue Gene Beckman

Beckman emphasizes the international nature of this problem. Japan, for example, has set an ambitious target of 2020 for its exascale computing strategy, which is being led by RIKEN Advanced Institute for Computational Science. Although they have not locked down all the necessary funding, they estimate a project cost of nearly $1.3 billion.

Regions around the world have come to the conclusion that the exascale finish line is unlike previous 1000x efforts and will require international collaboration. Beckman points to TOP500 list stagnation has indicative of the difficulty of this challenge. In light of this, Japan and the US have signed a formal agreement to collaborate on HPC system software development. The agreement signed at ISC includes significant collaboration.

Europe is likewise pursuing similar agreements with the US and Japan. As part of its Horizon 2020 program, Europe is planning to invest 700 million Euros between 2014 and 2020 to fund next-generation systems. Part of this initiative includes a special interest in establishing a Euro-centric HPC vendor base.

No discussion of the global exascale race would be complete without mentioning China, which has operated the fastest computer in the world, Tianhe-2, for the last three iterations of the TOP500 list. Tianhe-2 is energy-efficient for its size with a power draw of 24MW power including cooling, however the expense has resulted in it’s not being turned on all the time.

Principally an Intel-powered system, Tianhe-2 also contains homegrown elements developed by China’s National University of Defense Technology (NUDT), including SPARC-derived CPUs, a high-speed interconnect, and its operating system, which is a Linux variant. China continues to invest heavily in HPC technology. Beckman says we can expect to see one of the next machine’s from China – likely in the top 10 – comprised entirely of native technology.

Can the exponential progress continue?

Looking at the classic History of Supercomputing chart, it looks like systems will continue to hit their performance marks if their massive power footprints are tolerable. At the device level, there is stress with regard to feature sizes nearing some fundamental limits. “Unless there is a revolution of some sort, we really can’t get off the curve that is heading towards a 64MW supercomputer,” says Beckman. “It’s about power, both in the number of chips and the total dissipation of each of chips.”

Beckman cites some of the forces of change with regard to software, including memory, threads, messaging, resilience and power. At the level of the programming model and the OS interface, Beckman suggests the need for coherence islands as well as persistence.

With increased parallelism, the notion that equal work is equal time is going away, and variability (noise, jitter) is the new norm. “The architecture will begin to show even more variability between components and your algorithms and your approaches, whether it’s tasks or threads, will address that in the future,” Beckman tells his audience, “and as we look toward exascale, the programmer who can master this feature well, will do well.”

Attracting and training the next generation of HPC users is a top priority for premier HPC centers like Argonne National Laboratory. One way that Argonne tackles this challenge is by holding an intensive summer school in extreme-scale computing. Tracing its summer program back to the 1980s, the presentations are worthwhile not just for the target audience – a select group of mainly PhD students and postdocs – but for anyone who is keenly interested in the state of HPC, where it’s come from and where it’s going.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire